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This work develops a model for the prediction of stability constants of Mg, Ba, Ca, and Sr
complexes, simultaneously. Quantitative structure–property relationship models are obtained
by selecting descriptors from diverse functional groups, topological, and quantum chemical
descriptors. Linear and non-linear methods such as multiple linear regression, partial least
squares, and artificial neural networks with Levenberg–Marquardt (ANN-LM) back propa-
gation algorithm were used to investigate the correlation between stability constant (log K) and
molecular descriptors. In this work, a suitable small subset of descriptors has been selected that
is able to predict the stability constants of Mg, Ba, Ca, and Sr complexes, simultaneously.
Finally, a 5-4-4 ANN-LM model was designed for predicting the stability constants of
complexes with high predictive ability.

Keywords: Stability constant; Alkaline earth metal complexes; Quantitative structure–property
relationship; Molecular descriptors

1. Introduction

There are many ways of estimating stability constants of coordination compounds,
from simple empirical rules (Irving–Williams order [1], cation classifications [2, 3],
distinction of hard and soft Lewis acids and bases, HSAB [4, 5]) to quantitative models,
which differ considerably both in the theoretical basis and in the level of sophistication.
Models based on ‘‘interaction parameters’’ between atoms in the first coordination
sphere [6, 7] were followed by molecular-mechanic [8, 9] and molecular-dynamic [10]
approaches, along with the methods based on continuous distribution of solvents [11,
12] and the overlapping sphere models [13].

In coordination chemistry, protonation constants of N-alkylated and N,N-
dialkylated glycines were successfully correlated with their Wiener and Randic indices,
as well as the stability constants of their ML and ML2, chelates [14]. Later, the method
was applied to the estimation of stability constants of copper(II) chelates with nine
naturally occurring amino acids, reproducing stability constants of mono-complexes
with a standard error (SE)¼ 0.07 log K unit [15]. Stability constants of their binary and
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ternary complexes were consecutively reproduced with an SE of 0.13 and 0.14 units,
respectively [15]. The stability constants of macrocyclic ligand–metal complexes in
solutions have been measured by various experimental techniques, such as potentio-
metry, conductometry, and calorimetry [16].

The main aim of this work was to select a small subset of common descriptors which
are able to predict the stability constants of different metal complexes including Ba, Mg,
Ca, and Sr; then develop a network that can predict the stability constant of different
metal complexes, simultaneously. Such models enable reliable prediction of the stability
constants for unknown complexes and to elucidate the structural factors determining
the stability of complexes.

2. Experimental

2.1. Data set

Stability constants of complexes of Mg, Ba, Ca, and Sr metals with 22 different organic
ligands have been taken from the literature [17] and presented in table 1. As can be seen
from this table, most of the ligands are carboxylic acids. The ranges of stability constant
in logarithmic scale for these compounds are between 0.51 and 8.69 for Mg, 0.31 and
7.78 for Ba, 0.51 and 10.7 for Ca, and 0.43 and 8.63 for Sr.

2.2. Molecular descriptors

The 3-D structures of the studied compounds were optimized using HYPERCHEM [18]
software and semi-empirical quantum-chemical method of AM1. After screening and
optimization of compounds, the descriptors from HYPERCHEM, MOPAC [19], and

Table 1. The full name of 22 ligands together with their experimental values of stability constants.

No. Ligand name Log K(Ba) Log K(Ca) Log K(Mg) Log K(Sr)

1 Acetic acid 0.39 0.53 0.51 0.43
2 ADP 2.36 2.82 3.11 2.50
3 Aspartic acid 1.14 1.16 2.43 1.48
4 ATP 3.29 3.60 4.00 3.03
5 n-Butyric acid 0.31 0.51 0.53 0.36
6 Citric acid 2.30 3.50 2.80 2.80
7 EDTA 7.78 10.7 8.69 8.63
8 Gluconic acid 0.95 1.21 0.70 1.00
9 Glutamic acid 1.28 1.43 1.90 1.37

10 Glutaric acid 2.04 1.06 1.08 0.60
11 Glyceric acid 0.80 1.18 0.86 0.89
12 Glycine 0.77 1.43 3.45 0.91
13 Glycolic acid 0.66 1.11 0.92 0.80
14 �-Hydroxybutyric acid 0.43 0.60 0.60 0.47
15 Lactic acid 0.55 1.07 0.93 0.70
16 Malic acid 1.30 1.80 1.55 1.45
17 NTA 4.82 6.41 5.41 4.98
18 Oxalic acid 2.31 3.00 2.55 2.54
19 Propionic acid 0.34 0.50 0.54 0.43
20 Succinic acid 1.57 1.20 1.20 0.90
21 Tartaric acid 1.95 1.80 1.36 1.94
22 Tetrametaphosphate 4.90 5.20 5.17 2.80

Mg, Ba, Ca, and Sr complexes 2467
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DRAGON [20] softwares were calculated. After submitting the calculated descriptors

to the regression routine, a few suitable multiple linear regression (MLR) models were

obtained. We used SPSS software package version 16 [21] for this processing and

selected the best model. A full list of five calculated molecular descriptors entered in the

best selected models along with their chemical meaning are given in table 2; calculated

values of five descriptors for all 22 ligands are given in table 3.

2.3. QSPR modeling

2.3.1. MLR and PLS analysis. MLR is a common method used in quantitative
structure–property relationship (QSPR) study. The QSPR equation was obtained by

forward stepwise multiple regression techniques following the multi-linear forms

SC¼ b0þ b1D1þ b2D2þ � � � þ bnDn, where SC was stability constant in logarithmic

scale (logK), D1, D2, and Dn were the descriptors. The intercept (b0) and the regression

coefficients of the descriptors (b1, b2, . . . , bn) were determined by using the least squares

method and n was the number of the descriptors. Statistical evaluation of the data was

obtained by the software SPSS [21]. In MLR analysis, the descriptors in the regression

equation must be independent; to reduce the number of the descriptors and minimize

the overlapped information in the descriptors, the concept of non-redundant descrip-

tors [22, 23] was used. The correlation coefficients between two descriptors should be

50.9. Table 4 shows the correlation matrix of the descriptors which proved that the

selected descriptors are independent.
After calculation of molecular descriptors, stepwise regression routine was used to

develop QSPR models. The best obtained linear model and the regression coefficients of

the descriptors for the stability constants of metal complexes are listed in table 5. As can

be seen from this table, five descriptors including mean atomic van der Waals volume

(Mv), number of double bond (nDB), complementary information content (order 2)

(CIC2), number of total secondary C (SP3) (nCS), and the energy of highest occupied

molecular orbital (HOMO) are entered in the best models. For regression analysis, the

data set was separated into two groups: training set including 14 compounds and test set

including eight compounds (table 6). Obtained models were used for calculating the

stability constants of different complexes in training and test sets. Calculated stability

constants of Mg, Ba, Ca, and Sr complexes using obtained MLR models are shown

in table 6.

Table 2. Definition of selected descriptors in the MLR models.

Descriptor Group Definition

1-Mv Constitutional descriptor Mean atomic van der Waals volume
(scale on carbon atom)

2-nDB Constitutional descriptor Number of double bonds
3-CIC2 Topological descriptor Complementary information content

(neighborhood of symmetry of 2-order)
4-nCS Functional groups Number of total secondary C (SP3)
5-HOMO Quantum chemical The energy of HOMO

2468 Z. Garkani-Nejad and M. Ahmadvand
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Modeling by the partial least square (PLS) regression method was performed by
using MINITAB [24]. The PLS method uses a few latent variables, so-called PLS
factors, to describe a given response y. These factors are deducted from the original
variables (X) and constructed to maximize the covariance between X (the matrix of
molecular descriptors), and y (the logK). For regression analysis, the data set was
separated into two groups: a training set including 14 compounds and a test set

Table 3. Calculated values of five molecular descriptors for all 22 ligands.

No. Ligand name Descriptor Mv nDB CIC2 nCS HOMO

1 Acetic acid 0.53 1 0.59 0 �11.62
2 ADP 0.61 3 0.67 1 �8.80
3 Aspartic acid 0.55 2 0.62 1 �10.68
4 ATP 0.61 4 0.84 1 �9.09
5 n-Butyric acid 0.53 1 0.91 2 �11.45
6 Citric acid 0.57 3 1.41 2 �11.64
7 EDTA 0.56 4 2.42 6 �9.76
8 Gluconic acid 0.53 1 1.42 1 �11.08
9 Glutamic acid 0.55 2 0.84 2 �10.52

10 Glutaric acid 0.56 2 1.50 3 �11.56
11 Glyceric acid 0.53 1 0.52 1 �11.42
12 Glycine 0.52 1 0.4 1 �10.29
13 Glycolic acid 0.53 1 0.44 1 �11.66
14 �-Hydroxybutyric acid 0.53 1 0.58 1 �11.20
15 Lactic acid 0.53 1 0.56 0 �11.30
16 Malic acid 0.56 2 0.72 1 �11.71
17 NTA 0.57 3 1.79 3 �10.66
18 Oxalic acid 0.58 2 1.00 0 �11.96
19 Propionic acid 0.53 1 0.61 1 �11.44
20 Succinic acid 0.56 2 1.29 2 �11.59
21 Tartaric acid 0.55 2 1.25 0 �11.62
22 Tetrametaphosphate 0.60 4 2.00 0 �12.39

Table 4. Correlation matrix for the five selected descriptors.

Mv nDB CIC2 nCS HOMO

Mv 1.000 – – – –
nDB 0.868 1.000 – – –
CIC2 0.406 0.676 1.000 – –
nCS 0.061 0.392 0.608 1.000 –
HOMO 0.356 0.388 �0.042 0.346 1.000

Table 5. Regression coefficients of the descriptors in MLR models for Ba, Ca, Mg, and Sr complexes.

X Constant Mv nDB CIC2 nCS HOMO

Ba 10.763(�7.57) �19.298(�13.42) 1.361(�0.43) 1.376(�0.54) 0.055(�0.18) 0.212(�0.23)
Ca 25.224(�13.44) �44.639(�23.82) 2.149(�0.76) 1.368(�0.96) 0.119(�0.31) 0.36(�0.41)
Mg 30.851(�11.49) �50.405(�20.38) 2.348(�0.65) 0.577(�0.82) �0.051(�0.27) 0.529(�0.35)
Sr 21.055(�11.15) �33.407(�19.76) 1.572(�0.63) 0.929(�0.79) 0.159(�0.26) 0.451(�0.34)
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including eight compounds which are the same as MLR sets (table 6). The number
of significant factors for the PLS algorithm was determined using the cross-validation
method. With cross-validation, one sample was kept out (leave-one-out (LOO)) of
the calibration and used for prediction. The process was repeated so that each of the
samples was kept out once. The predicted values of left-out samples were then compared
to the observed values using prediction error sum of squares (PRESS). The PRESS
obtained in the cross-validation was calculated each time that a new principal
component (PC) was added to the model. The optimum number of PLS factors is the
one that minimizes PRESS. Calculated stability constants using PLS models for
training and test sets are shown in table 6.

2.3.2. Artificial neural network. For artificial neural network (ANN) production, the
data set was divided into three groups: training, test, and validation sets. All molecules
were randomly chosen for these sets. The training, test, and validation sets consisted of
14, four, and four molecules, respectively. The training, validation, and test data sets
were used to optimize the network performance. The training set was used for model
generation and the test set was used to take care of overtraining. The validation set was
used to evaluate the generated model. MATLAB version 7.6 [25] was used for
implementing three-layer feed forward back propagation ANN with Levenberg–
Marquardt algorithm. The proper number of nodes in the hidden layer was determined

Table 6. The observed and calculated log K values – training and test sets for the MLR and PLS models for
Ba, Ca, Mg, and Sr complexes.

No.

Ba Ca Mg Sr

Log
K(EXP)

Log
K(MLR)

Log
K(PLS)

Log
K(EXP)

Log
K(MLR)

Log
K(PLS)

Log
K(EXP)

Log
K(MLR)

Log
K(PLS)

Log
K(EXP)

Log
K(MLR)

Log
K(PLS)

1a 0.39 0.25 0.28 0.53 0.34 0.62 0.51 0.68 1.06 0.43 0.23 0.59
2a 2.36 2.19 2.56 2.82 2.31 2.95 3.11 2.83 3.44 2.50 2.21 2.55
3a 1.14 1.52 1.42 1.16 2.10 1.70 2.43 2.48 1.72 1.48 1.75 1.35
4 3.29 3.72 3.15 3.60 4.59 3.69 4.00 5.12 4.12 3.03 3.80 3.14
5 0.31 0.83 0.27 0.51 1.08 0.14 0.53 0.85 0.30 0.36 0.92 0.09
6 2.30 3.42 3.18 3.50 4.20 3.83 2.80 3.72 3.25 2.80 3.10 2.92
7 7.78 6.99 7.50 10.7 9.33 9.69 8.69 7.94 8.32 8.63 7.43 7.55
8 0.95 1.56 1.06 1.21 1.79 0.80 0.70 1.39 0.61 1.00 1.40 0.52
9 1.28 1.91 1.89 1.43 2.57 2.25 1.90 2.64 2.13 1.37 2.18 1.76
10 2.04 2.46 2.40 1.06 2.77 2.90 1.08 1.92 2.53 0.60 2.15 2.22
11 0.80 0.24 �0.03 1.18 0.43 �0.25 0.86 0.69 0.03 0.89 0.41 �0.19
12 0.77 0.51 0.83 1.43 1.12 1.37 3.45 1.72 1.79 0.91 1.14 1.21
13 0.66 0.09 0.44 1.11 0.24 0.74 0.92 0.52 1.12 0.80 0.24 0.67
14a 0.43 0.38 0.26 0.60 0.59 0.14 0.60 0.84 0.36 0.47 0.57 0.11
15a 0.55 0.27 0.43 1.07 0.41 0.59 0.93 0.83 0.90 0.70 0.34 0.52
16 1.30 1.24 1.11 1.80 1.41 1.18 1.55 1.49 1.16 1.45 1.03 0.90
17 4.82 4.21 4.66 6.41 5.19 5.97 5.41 4.40 5.17 4.98 4.06 4.64
18 2.31 1.13 2.19 3.00 0.69 2.99 2.55 0.56 2.87 2.54 0.36 2.38
19 0.34 0.37 0.47 0.50 0.56 0.72 0.54 0.74 1.04 0.43 0.49 0.63
20a 1.57 2.10 2.36 1.20 2.35 2.95 1.20 1.82 2.65 0.90 1.77 2.28
21a 1.95 2.13 1.84 1.80 2.49 2.11 1.36 2.40 1.85 1.94 1.74 1.60
22a 4.90 4.75 4.00 5.20 5.31 4.72 5.17 4.60 3.89 2.80 3.57 3.58

aMolecules selected as test set
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by training the network with different numbers of nodes in the hidden layer. In this
work, four neurons were selected. Five molecular descriptors in the best linear model
(MLR) were used as inputs for ANN-LM and four output values were the logK
(stability constant) of Ba, Ca, Mg, and Sr complexes. The structure of optimized ANN-
LM is shown in figure 1. Calculated stability constants using ANN-LM model for
training, test, and validation sets are shown in table 7. Statistical parameters including
determination coefficient (R2) and SE for MLR, PLS, and ANN-LM models for
different sets are shown in table 8.

2.4. Model validation

2.4.1. Y-randomization. Part of validating the models is to check for the possibility of
chance correlations. This can be done by performing the entire sequence of
computations over but with the dependent variables scrambled. This scrambling
destroys any relationship between the descriptors and the dependent variable. No
model that exceeds chance performance should be found. The results obtained are
compared to the results achieved with the actual computations to demonstrate that the
actual results were achieved by finding relationships rather than by finding chance
correlations. Results of this test are compiled in table 9.

2.4.2. Cross-validation technique. The consistency and reliability of a method can be
explored using the cross-validation technique. Two different strategies of LOO and
leave-multiple-out (LMO) can be carried out in this method. In LOO strategy, by

Figure 1. Structure of designed ANN.
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deleting each time one object from training set, a number of models will be produced.
Obviously, the number of models produced by the LOO procedure is equal to the
number of available examples. In the case of LMO, M represents a group of randomly
selected data points, which would leave out at the beginning and would be predicted by
the model, which was developed using the remaining data points. So, M molecules are
considered as prediction set.

Table 7. The observed and calculated log K values – training, validation, and test sets for the ANN-LM
model for Ba, Ca, Mg, and Sr complexes.

Ba Ca Mg Sr

No.
Log

K(EXP)

Log
K(ANN-LM)

Log
K(EXP)

Log
K(ANN-LM)

Log
K(EXP)

Log
K(ANN-LM)

Log
K(EXP)

Log
K(ANN-LM)

Train.
4 3.29 3.12 3.60 3.54 4.00 3.98 3.03 3.05
5 0.31 0.47 0.51 0.53 0.53 0.46 0.36 0.39
6 2.30 2.52 3.50 3.34 2.80 2.83 2.80 2.67
7 7.78 7.81 10.7 10.69 8.69 8.71 8.63 8.61
8 0.95 0.93 1.21 1.19 0.70 0.75 1.00 1.02
9 1.28 1.32 1.43 1.46 1.90 1.90 1.37 1.33

10 2.04 2.02 1.06 1.08 1.08 1.11 0.60 0.62
11 0.80 0.58 1.18 1.05 0.86 0.99 0.89 0.80
12 0.77 0.82 1.43 1.42 3.45 3.38 0.91 0.90
13 0.66 0.60 1.11 1.15 0.92 1.00 0.80 0.84
16 1.30 1.35 1.80 1.82 1.55 1.41 1.45 1.52
17 4.82 4.73 6.41 6.44 5.41 5.32 4.98 5.04
18 2.31 2.31 3.00 3.02 2.55 2.55 2.54 2.41
19 0.34 0.38 0.50 0.67 0.54 0.54 0.43 0.56

Valid
2 2.36 2.58 2.82 2.62 3.11 3.45 2.50 2.41
3 1.14 1.77 1.16 2.12 2.43 2.28 1.48 1.83

15 0.55 0.54 1.07 0.78 0.93 0.56 0.70 0.73
22 4.90 4.14 5.20 5.50 5.17 4.91 2.80 4.33

Test
1 0.39 0.35 0.53 0.54 0.51 0.23 0.43 0.54

14 0.43 0.57 0.60 0.98 0.60 1.02 0.47 0.76
20 1.57 1.36 1.20 1.48 1.20 1.16 0.90 1.18
21 1.95 1.95 1.80 2.66 1.36 2.16 1.94 2.16

Table 8. Statistical parameters for training, test, and validation sets using MLR, PLS, and ANN-LM
models for Ba, Ca, Mg, and Sr complexes.

Method Set

Ba Ca Mg Sr

R2 SE R2 SE R2 SE R2 SE

MLR Train. 0.897 0.692 0.840 1.170 0.820 1.020 0.823 0.997
Test 0.963 0.313 0.834 0.684 0.914 0.504 0.823 0.421

PLS Train. 0.960 0.429 0.921 0.824 0.905 0.740 0.914 0.694
Test 0.901 0.508 0.781 0.786 0.728 0.897 0.738 0.512

ANN-LM Train. 0.997 0.120 0.999 0.081 0.999 0.074 0.999 0.077
Valid 0.945 0.556 0.918 0.680 0.972 0.361 0.834 0.481
Test 0.999 0.001 0.959 0.147 0.734 0.269 0.987 0.099
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3. Results and discussion

The goal of this work was developing a QSPR model to predict the stability constants of

Mg, Ba, Ca, and Sr complexes using a small subset of common descriptors. Therefore,

the development of a robust and interpretable QSPR model, which is able to accurately

predict the stability constants, is necessary.
In general terms, the stability constant of a metal complex can be calculated as

follows: K¼ [ML]/[M][L], where K is the stability constant, M is the amount of metal

ion, and L is the amount of a ligand. From the definition of K, the stability constant

depends on three factors: the concentrations of free metal, free ligand, and complex.

Clearly, K relies heavily upon the concentration of the complex. The total concentration

of metal, CM can be computed. The basic equation CM¼ [M]þ [ML] with [ML]¼K [M]

[L] becomes CM¼ [M] (1þK [L]); hence [M]¼CM/(1þK [L]) shows that the

concentration of M depends on the stability constant of the complex and free

concentration of the ligand which is dependent upon corresponding pK and pH values.

Fortunately, the metal ions in the studied complexes are the same and this allowed us to

ignore the ions, considering only the ligands.
As the first step, we developed a linear model of MLR, whose specifications are given

in table 5. This model has been developed considering two purposes. First, a stepwise

MLR procedure was used to select suitable variables. It can be seen from table 5 that

descriptors of Mv, nDB, CIC2, nCS, and HOMO were chosen. These descriptors can be

classified as constitutional (Mv, nDB), topological (CIC2), functional group (nCS), and

quantum chemical (HOMO) descriptors. The description of these descriptors is given in

table 2. These descriptors indicate cation–ligand interactions (nDB), steric effects (Mv,

CIC2, nCS), and electronic interactions (HOMO) of the ligands on the stability

constant.
The second purpose of developing a MLR model was to assess the linear relationship

between these descriptors and the stability constant parameters. We used the proposed

linear model to interpret the stability constant values. This means we should investigate

the variables that are most important predictors among the five descriptors appearing in

the MLR models. In the case of the MLR, the mean effect of each descriptor can be

considered as a measure of its role in predicting the stability constant. Mean effect is

defined as:

MFj ¼
�j
Pi¼n

i¼1 dijPm
j �j

Pi¼n
i¼1 dij

, ð1Þ

Table 9. Regression coefficient (R2) and SE values for Y-randomization tests.

Ba Ca Mg Sr

Y-randomization R2 SE R2 SE R2 SE R2 SE

1 0.236 1.856 0.239 2.424 0.213 2.092 0.208 1.939
2 0.264 1.822 0.254 2.401 0.255 2.035 0.262 1.872
3 0.195 1.905 0.186 2.507 0.142 2.185 0.223 1.920
4 0.215 1.882 0.165 2.540 0.242 2.053 0.183 1.970
5 0.192 1.909 0.151 2.561 0.129 2.201 0.142 2.019
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where MFj represents the mean effect for the considered descriptor j, �j is the coefficient
of the descriptor j, dij stands for the value of the target descriptors for each molecule
and, eventually, m is the descriptor number in the model. The MF value indicates the
relative importance of a descriptor, compared with the other descriptors in the model.
Its sign exhibits the variation direction in the values of the stability constant as a result
of the increase (or reduction) of these descriptor values.

Figure 2 shows the mean effect of each variable in the MLR model for all Ba, Mg,
Ca, and Sr complexes. As can be seen from this figure, Mv, nDB, and HOMO are the
most important parameters affecting the stability constant of the complexes; these
effects for all metal complexes are the same. As can be seen from this figure, stability
constant values decrease with increasing Mv values and increases with increasing nDB
values. Also, higher values of HOMO could lead to decrease in log K values. Therefore,
with increasing HOMO, the complex is less stable. The HOMO values are equal to the
ionization potential with a negative sign; the more easily the ligand ionizes the more
stable the complex will be.

In this QSPR modeling, according to selected descriptors, complexation is mainly
related to: cation (acceptor)/ligand (donor) interactions (nDB), steric effects
(Mv, CIC2, nCS), and electronic interactions (HOMO). Figure 3 indicates the changes
of stability constants against the number of double bonds in the ligands. Topological
features of the ligands involving the nature and number of donors in the ligand, and the
type of substituents on the ligand, play important roles in both the selectivity and
stability of the resulting complexes. The MLR and PLS calculated values of stability
constants for training and test sets are shown in table 6.

As a second step, we were interested to investigate the non-linear characteristics of
the stability constant and develop a network that could predict the stability constant of
different metal complexes including Ba, Mg, Ca, and Sr, simultaneously. Therefore, a

Figure 2. Mean effects of descriptors in MLR model.
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feed forward propagation ANN was developed using the descriptors appearing in
the MLR model as its inputs. It is a common practice to optimize the parameters of
number of nodes in the hidden layer, learning rate, and momentum in developing a
reliable network. The procedures for optimizing these parameters are given
elsewhere [26].

A back propagation network with a 5–4–4 architecture was developed using
Levenberg–Marquardt algorithm (ANN-LM) to predict the stability constants of Ba,
Mg, Ca, and Sr complexes. The calculated values of stability constant for training, test,
and validation sets using ANN-LM are shown in table 7.

The consistency and reliability of the ANN-LM and MLR models are illustrated
using the cross-validation technique. In particular, the leave-4-out (L4O) procedure was
utilized in this work, which produces a number of models by deleting four objects from
the training set. Calculations of R2 and SE were based on three random selections of
groups of four molecules from the data set (table 10).

The consistency of the R2 values for L4O modified data sets indicates that the
proposed model is reliable. For the sake of comparison, a PLS analysis was also
performed using all variables. Table 8 shows that results of the ANN-LM model are
superior compared with those of the PLS model.

In order to ensure the robustness of the ANN-LM model, the Y-randomization
test was performed. The dependent variable vector (stability constant) was randomly

Figure 3. Plot of logK values against the descriptor values of nDB.
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Figure 4. Plots of predicted vs experimental values of logK for ANN-LM model: (a) Ba, (b) Ca, (c) Mg, (d)
Sr.

Table 10. Cross-validation results for ANN-LM model.

Set Number of moleculesa

Ba Ca Mg Sr

R2 SE R2 SE R2 SE R2 SE

1 Test 3,11,18,19 0.934 0.314 0.914 0.339 0.993 0.081 0.945 0.137
Valid 1,6,10,17 0.992 0.252 0.928 0.931 0.999 0.788 0.871 0.915
Train. 0.970 0.410 0.980 0.445 0.937 0.670 0.968 0.398

2 Test 8,10,16,17 0.872 0.676 0.889 0.715 0.868 0.677 0.963 0.261
Valid 4,5,18,19 0.933 0.421 0.992 0.160 0.996 0.120 0.761 0.695
Train. 0.996 0.140 0.992 0.253 0.982 0.312 0.989 0.230

3 Test 4,6,20,21 0.931 0.181 0.830 0.460 0.910 0.500 0.867 0.340
Valid 7,11,13,16 0.999 0.144 0.999 0.139 0.994 0.412 0.999 0.610
Train. 0.991 0.152 0.983 0.234 0.968 0.297 0.969 0.205

aNumbers refer to the number of the compounds given in table 1. The remaining molecules for each set are due to the
corresponding training set.
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shuffled and a new QSPR model was developed using the original independent
variable matrix. The new QSPR model is expected to have low R2 and high SE
values. Several random shuffles of the y vector were performed and the results
are shown in table 9. The R2 and SE values indicate that the good results for the
ANN-LM model are not due to a chance correlation or structural dependency of the
training set.

The observed and ANN-LM predicted values of the stability constant for all
compounds studied in this work are shown in table 7. Figure 4(a–d) shows the plots of
the ANN-LM predicted versus the experimental values of the stability constant for the
Ba, Ca, Mg, and Sr complexes. The correlation of this plot indicates the reliability of

Figure 4. Continued.
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the models. Of course, small outliers may be seen in some plots. In this work, an ANN
with four outputs has been used, simultaneously. Training of an ANN with more than
one output is more difficult than ANNs with only one output. Therefore, the SEs for
some output values are important.

Statistical parameters for the MLR, PLS, and ANN-LM methods are listed in
table 8. The ANN-LM represented the best results for stability constants of
metal complexes. Superiority of non-linear models (ANN-LM) over the linear models
(MLR, PLS) revealed that the stability constant of complexes have non-linear
characteristics.

4. Conclusion

This study has shown that the stability constants of complexes (logK) can be
modeled in terms of structure-based descriptors solely calculated from the structure of
ligands. A small subset of common descriptors is able to predict the stability constants
of different metal complexes including Ba, Ca, Mg, and Sr, simultaneously.
Validation of the QSPR model suggests that the model can be used to make predictions
for compounds not in the original data set. The structural information encoded in the
descriptors in the discussed models indicates the significant and specific structure
information that may be useful for predicting the stability constants of new complexes.
A back propagation network with a 5–4–4 architecture was developed using
Levenberg–Marquardt algorithm (ANN-LM). Obtained results using non-linear
models indicated that the stability constants of complexes have non-linear
characteristics.
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